姓名:Daniel Curtis
性别:男
职称/职务:授课教师-工艺设备设计
电子邮箱: d.j.curtis@swansea.ac.uk
个人简介:
Curtis博士的兴趣是开发用于复杂流体研究的先进流变仪。他在先进制造和医疗保健应用方面的工作涉及研究在制造工艺和临床相关性条件下流体微结构对流动的响应的技术。他对生物聚合物的流变学、成像和分子动力学模拟研究涉及凝胶网络发展的粘弹性和光谱分析,有助于提高对血凝块演变的理解。他还开发了核磁共振和微流变仪方法,用于研究软固体和复杂流体中的流动。
教育背景:
2007.10 - 2011.01 斯旺西大学复杂流体博士学位
2006.09 - 2007.10 斯旺西大学纳米科学至纳米技术硕士学位
2002.09 - 2006.07 斯旺西威尔士大学化学与生物化学工程硕士学位
工作经历:
2015.08 - 至今 斯旺西大学化学工程系高级讲师
2014.09 - 2015.07 斯旺西大学工程学院EPSRC健康影响伙伴关系研究官
2011.11 - 2014.08 斯旺西大学医学院EPSRC干细胞联盟研究官
研究领域:
流变学
血液流变学
非牛顿流体流动
核磁共振扩散法
分形聚集分析
荧光显微镜
代表性成果:
1. Curtis, D. & Davies, A. (2021). Volterra kernels, Oldroyd models, and interconversion in superposition rheometry. Journal of Non-Newtonian Fluid Mechanics, 293, 104554. https://doi.org/10.1016/j.jnnfm.2021.104554, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa56746
2. Morgan, M., Holder, A., Curtis, D., & Deganello, D. (2018). Formulation, characterisation and flexographic printing of novel Boger fluids to assess the effects of ink elasticity on print uniformity. Rheologica Acta, 57(2), 105-112. https://doi.org/10.1007/s00397-017-1061-9, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa37777
3. Holder, A., Claypole, J., Claypole, T., Cooper, P., Williams, R., & Curtis, D. (2018). Fourier Transform Controlled Stress Parallel Superposition (FT-CSPS): Validation and application in processing printable functional materials. Physics of Fluids, 30(7), 077105. https://doi.org/10.1063/1.5029819, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa43407
4. Sabra, A., Lawrence, M., Curtis, D., Hawkins, K., Williams, R., & Evans, A. (2020). In vitro clot model to evaluate fibrin-thrombin effects on fractal dimension of incipient blood clot. Clinical Hemorheology and Microcirculation, 74(2), 147-153.https://doi.org/10.3233/ch-190615, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51304
5. Curtis, D. & Davies, A. (2019). On shear-rate dependent relaxation spectra in superposition rheometry: a basis for quantitative comparison/interconversion of orthogonal and parallel superposition moduli. Journal of Non-Newtonian Fluid Mechanics, 104198. https://doi.org/10.1016/j.jnnfm.2019.104198, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa52734
6. Curtis, D. & Davies, A. (2019). On response spectra and Kramers-Kronig relations in superposition rheometry. Physics of Fluids, 31(12), 127105. https://doi.org/10.1063/1.5133885, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa52860
7. Hawkins, K. & Curtis, D. (2020). Papers from the 2019 Institute of Non-Newtonian Fluid Mechanics Meeting in Lake Vyrnwy, Wales. Physics of Fluids, 32(4), 040401. https://doi.org/10.1063/5.0008256, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa54103
Hawkins, K., Evans, P., Lawrence, M., Curtis, D., Davies, M., Williams, P., Williams, R., & Evans, A. (2010). The development of rheometry for strain-sensitive gelling systems and its application in a study of fibrin–thrombin gel formation. Rheologica Acta, 49(9), 891-900. https://doi.org/10.1007/s00397-010-0473-6, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa10210