姓名: Angi Munnangi
职务: 工程师的商业领导力课程负责人
网页: Dr Anji Munnangi - Swansea University
教育背景:
2003-2007 印度马德拉斯印度理工学院化学博士
2000-2002 印度安得拉大学化学硕士
1996-1999 Acharya Nagarjuna大学化学学士
工作经历:
2019-至今 斯旺西大学理工学院高级讲师
2014-2019 德国乌尔姆亥姆霍兹研究所(HIU)材料科学家
2009-2014 德国卡尔斯鲁厄技术学院纳米技术研究所科学家
研究方向:
能源技术
离子电池
代表性成果:
1. Feinauer, M., Euchner, H., Fichtner, M., Reddy, M., & Munnangi, A. (2019). Unlocking the Potential of Fluoride-based Solid Electrolytes for Solid-State Lithium Batteries. ACS Applied Energy Materials
https://doi.org/10.1021/acsaem.9b01166, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51762
2. Mohammad, I., Witter, R., Fichtner, M., Reddy, M., & Munnangi, A. (2019). Introducing Interlayer Electrolytes: Toward Room-Temperature High-Potential Solid-State Rechargeable Fluoride Ion Batteries. ACS Applied Energy Materials, 2(2), 1553-1562.
https://doi.org/10.1021/acsaem.8b02166, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51583
3. Euchner, H., Clemens, O., & Munnangi, A. (2019). Unlocking the potential of weberite-type metal fluorides in electrochemical energy storage. npj Computational Materials, 5(1)
https://doi.org/10.1038/s41524-019-0166-3, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51592
4. Helen, M., Fichtner, M., Reddy, M., & Munnangi, A. (2019). Toward Improving the Areal Energy Density of Lithium–Sulfur Batteries with Ultramicroporous Carbon–Sulfur Composite Electrodes. Energy Technology, 1900183
https://doi.org/10.1002/ente.201900183, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51593
5. Reddy, M., Breitung, B., Kiran Chakravadhanula, V., Helen, M., Witte, R., Rongeat, C., Kübel, C., Hahn, H., Fichtner, M., & Munnangi, A. (2018). Facile synthesis of C–FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage. RSC Advances, 8(64), 36802-36811.
https://doi.org/10.1039/C8RA07378C, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51591
6. Munnangi, A., Euchner, H., Witter, R., & Clemens, O. (2018). Structure and electrochemical properties of Na2±xV3P2O13 (x = 0 and 1): a promising cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 6(16), 6947-6958.
https://doi.org/10.1039/c8ta00588e, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51584
7. Zhang, L., Munnangi, A., & Fichtner, M. (2018). Electrochemical performance of all solid-state fluoride-ion batteries based on thin-film electrolyte using alternative conductive additives and anodes. Journal of Solid State Electrochemistry, 22(4), 997-1006.
https://doi.org/10.1007/s10008-017-3838-2, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51576
8. Helen, M., Diemant, T., Schindler, S., Behm, R., Danzer, M., Kaiser, U., Fichtner, M., Anji Reddy, M., & Munnangi, A. (2018). Insight into Sulfur Confined in Ultramicroporous Carbon. ACS Omega, 3(9), 11290-11299.
https://doi.org/10.1021/acsomega.8b01681, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51586
9. Munnangi, A., Helen, M., Groß, A., Fichtner, M., & Euchner, H. (2018). Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon. ACS Energy Letters, 3(12), 2851-2857.
https://doi.org/10.1021/acsenergylett.8b01761, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51565
10. Mohammad, I., Witter, R., Fichtner, M., & Munnangi, A. (2018). Room-Temperature, Rechargeable Solid-State Fluoride-Ion Batteries. ACS Applied Energy Materials, 1(9), 4766-4775.
https://doi.org/10.1021/acsaem.8b00864, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51570