当前位置: 网站首页 > 师资队伍 > 外籍教师 > 正文
Professor Trystan Watson
阅读次数:     发布时间:2025-09-14

姓名:Professor Trystan Watson

职位:现任课程负责人-功能和智能材料

网页: https://www.swansea.ac.uk/staff/t.m.watson/


个人简介:

       Trystan Watson教授的研究领域是薄膜印刷光伏,他的专长是开发用于制造新型光伏的新技术,包括沉积和固化工艺,以及使用电化学、光化学或光电方法对其进行表征。目前有一个复兴的薄膜印刷光伏,通常这些发展目前驻留在实验室环境。Trystan Watson教授的研究目标是利用这些材料集,开发大规模制造的制造管道。为了达到这一目的,采用了三管齐下的方法(i)确定与规模相关的损失机制-从实验室规模增加到中试规模时性能下降。(ii)解决工艺瓶颈,减少制造时间(iii)建筑转换-通过在薄板加工玻璃和卷对卷金属或塑料上建造设备,确保最广泛的基材范围。

特别是他的研究活动包括光活性材料的涂层和固化,PV器件的实验室和子模块规模制造,以及通过电化学和光电方法表征光活性材料。这项研究跨越了许多不同的技术:液体基染料敏化太阳能电池,固态染料敏化太阳能电池,有机铅卤化物钙钛矿和最近的钾矿CZTS(Cu2ZnSnS4)。


教育背景:  

2001.08 – 2005.09博士,材料工程,斯旺西大学

1997.09 – 2001.07学士,化学,斯旺西大学


工作经历:

2018.03 – 至今 教授,材料工程,斯旺西大学

2016.03 – 2018.03副教授,工程学院,斯旺西大学

2013.09 – 2016.03高级讲师,工程学院,斯旺西大学

2011.07 – 2013.08高级技术转移研究员,SPECIFIC斯旺西大学

2007.05 – 2011.07研究人员,材料研究中心,斯旺西大学

2005.10 – 2007.04产品开发工程师,Corus,斯旺西

2001.10 – 2005.10研究工程师,Corus, 斯旺西


研究领域:

薄膜光伏

沉积和固化

大规模制造

电化学表征

腐蚀

染料敏化太阳能电池

有机铅卤化物钙钛矿

钾矿CZTS


代表性成果:

1. Wei, Z., Smith, B., De Rossi, F., Searle, J., Worsley, D., & Watson, T. (2019). Efficient and semi-transparent perovskite solar cells using a room-temperature processed MoOx/ITO/Ag/ITO electrode. Journal of Materials Chemistry C(35)

https://doi.org/10.1039/C9TC03684A, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51397

2. Chen, M., Liu, D., Li, W., Gurney, R., Li, D., Cai, J., Spooner, E., Kilbride, R., McGettrick, J., Watson, T., Li, Z., Jones, R., Lidzey, D., & Wang, T. (2019). Influences of Non-fullerene Acceptor Fluorination on Three-Dimensional Morphology and Photovoltaic Properties of Organic Solar Cells. ACS Applied Materials & Interfaces, 11(29), 26194-26203.

https://doi.org/10.1021/acsami.9b07317, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51386

3. Yilmaz, P., Greenwood, P., Meroni, S., Troughton, J., Novak, P., Li, X., Watson, T., & Briscoe, J. (2019). Self-adhesive electrode applied to ZnO nanorod-based piezoelectric nanogenerators. Smart Materials and Structures

https://doi.org/10.1088/1361-665X/ab255b, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51380

4. Kerremans, R., Sandberg, O., Meroni, S., Watson, T., Armin, A., & Meredith, P. (2019). On the Electro‐Optics of Carbon Stack Perovskite Solar Cells. Solar RRL, 1900221

https://doi.org/10.1002/solr.201900221, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51379

5. Yates, H., Meroni, S., Raptis, D., Hodgkinson, J., & Watson, T. (2019). Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells. Journal of Materials Chemistry C, 7(42), 13235-13242.

https://doi.org/10.1039/c9tc03922h, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa51378

http://dx.doi.org/10.1039/c9tc03922h

6. Poli, I., Hintermair, U., Regue, M., Kumar, S., Sackville, E., Baker, J., Watson, T., Eslava, S., & Cameron, P. (2019). Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nature Communications, 10(1)

https://doi.org/10.1038/s41467-019-10124-0, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa50291

http://dx.doi.org/10.1038/s41467-019-10124-0

7. Lin, C., De Rossi, F., Kim, J., Baker, J., Ngiam, J., Xu, B., Pont, S., Aristidou, N., Haque, S., Watson, T., McLachlan, M., & Durrant, J. (2019). Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive. Journal of Materials Chemistry A, 7(7), 3006-3011.

https://doi.org/10.1039/C8TA11985F, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa48968

8. Burkitt, D., Searle, J., Worsley, D., & Watson, T. (2018). Sequential Slot-Die Deposition of Perovskite Solar Cells Using Dimethylsulfoxide Lead Iodide Ink. Materials, 11(11), 2106

https://doi.org/10.3390/ma11112106, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa44925

9. De Rossi, F., Baker, J., Beynon, D., Hooper, K., Meroni, S., Williams, D., Wei, Z., Yasin, A., Charbonneau, C., Jewell, E., & Watson, T. (2018). All Printable Perovskite Solar Modules with 198 cm2 Active Area and Over 6% Efficiency. Advanced Materials Technologies, 3(11)

https://doi.org/10.1002/admt.201800156, SU Repository: https://cronfa.swan.ac.uk/Record/cronfa40885